[1]:

[2]:

[2]:

linear-regression-tutorial
November 19, 2025

1 Linear Regression Tutorial

Author: Andrew Andrade (andrew@andrewandrade.ca)
This is part one of a series of tutorials related to regression used in data science.
Recommended reading: https://www.statlearning.com/ (Chapter 2)

https://hastie.su.domains/ISLR2/Slides/Ch3_Linear Regression.pdf https://github.com/intro-
stat-learning /ISLP_ labs/blob/stable/Ch03-linreg-lab.ipynb

In this tutorial, We will first learn to fit a simple line using Least Squares Linear Regression (LSLR),
plot residuals, residual distribution, statistics approach to linear regression, horizontal residuals and
end with total least squares linear regression.

1.1 Fitting a line using LSLR

First let us import the necessary libraries and read the data file. You can follow along by down-
loading the dataset from here: TODO.

import matplotlib.pyplot as plt
import numpy as np

import pandas as pd

from math import log

from sklearn import linear_model

#comment below ©1f not using ipython notebook
/%matplotlib inline

Now lets read the first set of data, take a look at the dataset and make a simple scatter plot.

#read csv
anscombe_i = pd.read_csv('anscombe_i.csv')
anscombe_i

x y
0 10 8.04
1 8 6.95
2 13 7.58
3 9 8.81
4 11 8.33

mailto:andrew@andrewandrade.ca
http://datascienceguide.github.io/regression/

[3]:

[3]:

5 14 9.96
6 6 7.24
7 4 4.26
8 12 10.84
9 7 4.82

10 5 5.68

plt.scatter(anscombe_i.x, anscombe_i.y, color='black')
plt.ylabel("Y")

plt.xlabel("X")

Text (0.5, 0, 'X')

11 ~

10 e

Luckly for us, we do not need to implement linear regression, since scikit learn already has a very
efficient implementation. The straight line can be seen in the plot below, showing how linear regres-
sion attempts to draw a straight line that will best minimize the residual sum of squares between
the observed responses in the dataset, and the responses predicted by the linear approximation.

The coeflicients, the residual sum of squares and the variance score are also calculated.

Note: from reading the documentation this method computes the least squares solution using a
singular value decomposition of X. If X is a matrix of size (n, p) this method has a cost of O(np?),

http://scikit-learn.org/stable/modules/linear_model.html#ordinary-least-squares

assuming that n > p. A more efficient alternative (for large number of features) is to use Stochastic
Gradient Descent or another method outlined in the linear models documentation

If you do not know what BigO is, please read the background information from the notes (or take
a algorithms course).

y=mx+ b
What is m?
That is the coefficient.

[4]: import numpy as np
from sklearn import linear_model

regr_i = linear_model.LinearRegression()
make X and y in the shape sklearn expects

X = anscombe_i.x.to_numpy() .reshape(-1, 1)
y = anscombe_i.y.to_numpy() .reshape(-1, 1)

regr_i.fit(X, y)

The coefficients
print('Coefficients: \n', regr_i.coef_)

The mean square error
print("Residual sum of squares: %.2f"
%, np.mean((regr_i.predict(X) - y) **x 2))
Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' I, regr_i.score(X, y))

plt.plot(X,regr_i.predict(X), color='green',
linewidth=3)

plt.scatter(anscombe_i.x, anscombe_i.y, color='black"')

plt.ylabel("X")
plt.xlabel("y")

Coefficients:

[[0.50009091]]
Residual sum of squares: 1.25
Variance score: 0.67

[4]: Text(0.5, 0, 'y")

http://scikit-learn.org/stable/modules/linear_model.html

[5]:

11 ~ °

10 ~

1.2 Residuals

From the notes, we learnt that we use ordinary linear regression when y is dependant on x since
the algorithm reduces the vertical residual (y_observed - y predicted). The figure below outlines
this using a different method for linear regression (using a polyfit with 1 polynomial).

import numpy as np
from pylab import =*

Convert z (Series) to NumPy array
X = anscombe_i.x.to_numpy()

Make sure y is 1D NumPy array
y_1d = y.flatten() # <f y is already ndarray, this works
y.flatten() is safe even if y s already 1D

Fit the line
k, d = np.polyfit(x, y_1d, 1)
yfit = k*x + d # thts is now a NumPy array

Plot

figure(1)
scatter(x, y_1d, color='black')
plot(x, yfit, 'green')

for ii in range(len(x)):
plot([x[ii], x[iil]l, [yfitl[iil, y_1d[iil], 'k")

xlabel('X")
ylabel('Y")
show ()

11 ~

10 ~

Now let us plot the residual (y - y predicted) vs x.

[6]:|# Import libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
import seaborn as sns
from scipy.stats import norm

Load Anscombe dataset (example dataset)
anscombe = sns.load_dataset("anscombe")
anscombe_i = anscombe[anscombe.dataset == "I"] # pick dataset I

Prepare X and vy
X = anscombe_i.x.to_numpy() .reshape(-1, 1) # 2D for sklearn
y = anscombe_i.y.to_numpy().flatten() # 1D for plotting and polyfit

Fit linear regression

regr = LinearRegression()

regr.fit(X, y)

yfit = regr.predict(X) # predicted values

plt.figure(l, figsize=(6,4))
plt.scatter(anscombe_i.x, y, color='black', label='Data')
plt.plot(anscombe_i.x, yfit, color='green', label='Regression line')

vertical lines (residuals)
for ii in range(len(anscombe_i)):
plt.plot([anscombe_i.x.iloc[ii], anscombe_i.x.iloc[iil],
[yfit[ii], y[iill, 'k', alpha=0.6)

plt.xlabel('X"')

plt.ylabel('Y"')

plt.title('Scatter with Regression and Residuals')
plt.legend()

plt.show()

residual_error = y - yfit

plt.figure(2, figsize=(6,4))

plt.scatter(anscombe_i.x, residual_error, color='blue')
plt.axhline(0, color='black', linestyle='--"')
plt.xlabel('X"')

plt.ylabel('Residual Error')

plt.title('Residual Error vs X')

plt.show()

error_mean = np.mean(residual_error)

error_sigma = np.std(residual_error)

plt.figure(3, figsize=(6,4))
count, bins, _ = plt.hist(residual_error, bins=10, density=True,
color='skyblue', alpha=0.7, edgecolor='black')

normal distribution curve

y_pdf = norm.pdf(bins, error_mean, error_sigma)
plt.plot(bins, y_pdf, 'k--', linewidth=1.5)
plt.xlabel('Residual Error')
plt.ylabel('Probability Density')
plt.title('Histogram of Residuals')

plt.show()

Scatter with Regression and Residuals

11 -
® Data

—— Regression line

10

Residual Error

Probability Density

Residual Error vs X

2.0 A

1.5+

1.0+

0.5

00 ft=======—=——==——=

_0.5 -

_l.D -

_1.5 -

_2.D -

Histogram of Residuals

0.7 1

0.6

0.5

0.4 1

0.3 7

0.2 1

014 L

0.0 —
—-2.0

T
-1.5

T
-1.0

T
—-0.5

T
0.0

0.5

Residual Error

1.0

As seen the the histogram, the residual error should be (somewhat) normally distributed and
centered around zero. This post explains why.

If the residuals are not randomly distributed around zero, consider applying a transform to the
data or applying non-linear regression. In addition to looking at the residuals, one could use the
statsmodels library to take a statistical approach to ordinary least squares regression.

[7]1: # load statsmodels as alias ~“sm™"
import statsmodels.api as sm

anscombe_i.y
= anscombe_i.x

B <

Adds a constant term to the predictor
#vy = mz +b
X = sm.add_constant (X)

#f1t ordinary least squares
sm.0LS(y, X)
est.fit()

est

est

est.summary ()

[7]:
Dep. Variable: y R-squared: 0.667
Model: OLS Adj. R-squared: 0.629
Method: Least Squares F-statistic: 17.99
Date: Wed, 19 Nov 2025 Prob (F-statistic): 0.00217
Time: 12:57:56 Log-Likelihood: -16.841
No. Observations: 11 AIC: 37.68
Df Residuals: 9 BIC: 38.48
Df Model: 1
Covariance Type: nonrobust
coef std err t P> |t| [0.025 0.975]
const 3.0001 1.125 2.667 0.026 0.456 5.544
e 0.5001 0.118 4.241 0.002 0.233 0.767
Omnibus: 0.082 Durbin-Watson: 3.212
Prob(Omnibus): 0.960 Jarque-Bera (JB): 0.289
Skew: -0.122 Prob(JB): 0.865
Kurtosis: 2.244 Cond. No. 29.1
Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
The important parts of the summary are the:

What is the R squared?

What is the Adj. R squared?

What is the P value?

http://stattrek.com/regression/linear-regression.aspx#ReqressionPrerequisites
http://www.datarobot.com/blog/ordinary-least-squares-in-python/

What are the 95% confidence intervals?
Helpful links: - R-squared (or coefficeient of determination
e 95.0% Conf. Interval

o http://onlinestatbook.com or http://stattrek.com/tutorials/ap-statistics-tutorial.aspx are
great free resources which outlines all the necessary background to be a great stat-
stician and data scientist. Both http://onlinestatbook.com/2/regression/inferential.html,
and http://stattrek.com/regression/slope-confidence-interval.aspx?Tutorial=AP provide the
specifics of confidence intervals for linear regression

We can now plot the fitted line to the data and observe the same results as the previous two
methods for linear regression.

[8]: plt.scatter(anscombe_i.x, anscombe_i.y, color='black')
X_prime = np.linspace(min(anscombe_i.x), max(anscombe_i.x), 100)[:, np.newaxis]

add constant as we did before
X_prime = sm.add_constant(X_prime)

y_hat = est.predict(X_prime)

Add the regression line (provides same as above)
plt.plot(X_prime[:, 1], y_hat, 'r')

[8]: [<matplotlib.lines.Line2D at 0x7fe7b1628350>]

11 ~ °

10 1

10

https://en.wikipedia.org/wiki/Coefficient_of_determination
http://stattrek.com/regression/slope-confidence-interval.aspx?Tutorial=AP

If we want to be even more fancier, we can use the seaborn library to plot Linear regression with
marginal distributions which also states the pearsonr and p value on the plot. Using the statsmodels
approach is more rigourous, but sns provides quick visualizations.

[9]: import seaborn as sns
sns.set(style="darkgrid", color_codes=True)

g = sns.jointplot(

x="x", # use keyword arguments
y=nyn ,

data=anscombe_i,

kind="reg",

x1im=(0, 20),

ylim=(0, 12),

color="r",

height=7 # 'size' 1s deprecated

11

http://stanford.edu/~mwaskom/software/seaborn/examples/regression_marginals.html
https://en.wikipedia.org/wiki/Marginal_distribution

12

10

0.0 2.5 5.0 7.5 10.0 125 15,0 175 20.0

Usually we calculate the (vertical) residual, or the difference in the observed and predicted in the
y. This is because “the use of the least squares method to calculate the best-fitting line through a
two-dimensional scatter plot typically requires the user to assume that one of the variables depends
on the other. (We caculate the difference in the y) However, in many cases the relationship between
the two variables is more complex, and it is not valid to say that one variable is independent and
the other is dependent. When analysing such data researchers should consider plotting the three
regression lines that can be calculated for any two-dimensional scatter plot.”

1.3 Regression using Horizontal Residual

If X is dependant on y, then the regression line can be made based on horizontal residuals as shown
below.

12

[10]:

import numpy as np
import matplotlib.pyplot as plt
from pylab import polyfit, scatter, plot, figure, xlabel, ylabel

Convert to NumPy arrays
X = anscombe_i.x.to_numpy() .reshape(-1, 1) # 2D for sklearn
y = anscombe_i.y.to_numpy() .reshape(-1, 1) # 2D

Fit line (z vs y)
k, d = polyfit(anscombe_i.y.to_numpy(), anscombe_i.x.to_numpy(), 1)
xfit = kxy.flatten() + d # flatten y to 1D for polyfit

Plot

figure(2)

scatter(anscombe_i.x, y.flatten(), color='black')
plot(xfit, y.flatten(), 'blue')

for ii in range(len(y)):
plot ([xfit[ii], anscombe_i.x.iloc[ii]], [y[iil, y[iill, 'k')

xlabel('X")

ylabel('Y')
plt.show()

11

10

13

14

[11]:

[11]:

1.4 Total Least Squares Regression

Finally, a line of best fit can be made using Total least squares regression, a least squares data
modeling technique in which observational errors on both dependent and independent variables are
taken into account. This is done by minizing the errors perpendicular to the line, rather than just
vertically. It is more complicated to implement than standard linear regression, but there is Fortran
code called ODRPACK that has this efficiently implemented and wrapped scipy.odr Python module
(which can be used out of the box). The details of odr are in the Scipy documentation and in even
more detail in the ODRPACK guide.

In the code below (inspired from here uses an inital guess for the parameters, and makes a fit using
total least squares regression.

from scipy.odr import Model, Data, ODR
from scipy.stats import linregress
import numpy as np

def orthoregress(x, y):
get initial guess by first running linear regression
linregression = linregress(x, y)
model = Model(fit_function)

data = Data(x, y)

od = ODR(data, model, betaO=linregression[0:2])
out = od.run()

return list(out.beta)
def fit_function(p, x):

#return y =mzx + b

return (p[0] * x) + p[1]
m, b = orthoregress(anscombe_i.x, anscombe_i.y)
determine the line-fit

y_ortho_fit = m*anscombe_i.x+b
plot the data

scatter (anscombe_i.x,anscombe_i.y, color = 'black')
plot(anscombe_i.x, y_ortho_fit, 'r')

xlabel ('X')

ylabel('Y')

Text(0, 0.5, 'Y")

14

https://en.wikipedia.org/wiki/Total_least_squares
http://docs.scipy.org/doc/scipy/reference/odr.html
http://docs.scipy.org/doc/external/odrpack_guide.pdf
http://blog.rtwilson.com/orthogonal-distance-regression-in-python/

[12]:

[12]:

11 +

10

Plotting all three regression lines gives a fuller picture of the data, and comparing their slopes pro-
vides a simple graphical assessment of the correlation coefficient. Plotting the orthogonal regression
line (red) provides additional information because it makes no assumptions about the dependence
or independence of the variables; as such, it appears to more accurately describe the trend in the
data compared to either of the ordinary least squares regression lines.

scatter (anscombe_i.x,anscombe_i.y,color = 'black')
plot(xfit, anscombe_i.y, 'b', label= "horizontal residuals")
plot(anscombe_i.x, yfit, 'g', label= "vertical residuals")
plot(anscombe_i.x, y_ortho_fit, 'r', label = "perpendicular residuals")
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,

ncol=2, mode="expand", borderaxespad=0.)

<matplotlib.legend.Legend at Ox7fe7affc2450>

15

—— horizontal residuals —— perpendicular residuals
—— vertical residuals

11

10

1.5 Key takeaways:

1. Know the asumptions for using linear regression and ensure they are met.

2. Do not blindly apply simple linear regression, understand when to use horizonal residuals (X
is dependant on y) or total least squares regression.

3. Understand the statistical significance of linear regression

1.6 Optional Further reading:

Chapter 2 (Linear regression) of Introduction to Statistical Learning
Appendix D Regression of Introduction to Data Mining

Linear models of Data Mining

Video (for using WEKA): Linear regression

1.6.1 Scikit Learn documentation:

Linear models

16

http://www-bcf.usc.edu/~gareth/ISL/
http://www-users.cs.umn.edu/~kumar/dmbook/index.php
http://www.cs.waikato.ac.nz/ml/weka/book.html
https://www.youtube.com/watch?v=6tDnNyNZDF0
http://scikit-learn.org/stable/modules/linear_model.html

1.7 Homework

Now that you have seen an examples of regression using a simple linear models, see if you can
predict the price of a house given the size of property from the log_regression__example.csv (found
in ../datasets/log_regression_example.csv If you are unable to fit a simple linear model, try trans-
forming variables to achieve linearity outlined in class or here

Hint: look at the log and power transform

17

https://github.com/datascienceguide/datascienceguide.github.io/raw/master/datasets/log_regression_example.csv
http://stattrek.com/regression/linear-transformation.aspx?Tutorial=AP

	Linear Regression Tutorial
	Fitting a line using LSLR
	Residuals
	Regression using Horizontal Residual
	Total Least Squares Regression
	Key takeaways:
	Optional Further reading:
	Scikit Learn documentation:

	Homework

