
Classification

December 5, 2025

1 � Deep Analysis of an Automotive MPG Classification Model
This notebook documents the final classification model used to predict the mpg_01 (a binary clas-
sification derived from continuous MPG) based on various automotive features.

The core strategy involves a K-Nearest Neighbors (𝐾 = 1) classifier combined with a specialized
preprocessing pipeline (V13 Preprocessor) designed to optimize feature representation.

1.1 1. � Setup and Data Loading
The initial setup imports all necessary libraries and loads the training and testing datasets.

[1]: import pandas as pd
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.impute import SimpleImputer

1.1.1 Libraries

• pandas & numpy: Standard libraries for data manipulation and numerical operations.
• KNeighborsClassifier: The core classification algorithm used. It’s an instance-based, non-

parametric algorithm that classifies a new point based on the majority class of its 𝐾 nearest
neighbors in the feature space.

• Pipeline: A sequential estimator that chains multiple steps (like preprocessing and mod-
eling). This is crucial for keeping the data transformations consistent and preventing data
leakage.

• ColumnTransformer: Allows different preprocessing steps to be applied to different subsets
of columns simultaneously.

• StandardScaler: Scales features to have a mean of 0 and a standard deviation of 1. This is
vital for distance-based algorithms like K-NN, which are sensitive to the scale of features.

• OneHotEncoder: Converts categorical features (like origin) into a numerical format suitable
for modeling.

• SimpleImputer: Handles missing values by replacing them with a specified statistic, like the
median.

1

1.2 2. � Data Loading, Cleaning, and Target Preparation
This section loads the data, performs basic cleaning, and prepares the target variable.

[2]: # --- 1. Load Data ---
df_train = pd.read_csv("train.csv")
df_test = pd.read_csv("test.csv")
test_ids = df_test['ID']

Clean Data
for df in [df_train, df_test]:

df['horsepower'] = pd.to_numeric(df['horsepower'], errors='coerce')
df.rename(columns={'year': 'model_year'}, inplace=True)

Prepare Target
df_train['mpg_01'] = df_train['mpg01']

Separate X and y
X = df_train.drop(columns=['mpg', 'mpg01', 'mpg_01', 'name', 'ID'],␣

↪errors='ignore')
y = df_train['mpg_01']

1.2.1 Data Preparation

1. Data Cleaning: The horsepower column, likely imported as a string due to inconsistent
entries, is explicitly converted to a numeric type. The argument errors='coerce' handles
non-numeric values (like ‘?’ or ‘–’) by setting them to NaN, which is then handled by the
SimpleImputer in the pipeline.

2. Feature Renaming: year is renamed to model_year for clarity.
3. Target Variable: The target variable for this binary classification task is mpg_01 (derived

from the original continuous mpg). This variable is separated from the features 𝑋.
4. Feature Exclusion: Columns like mpg, mpg01, name, and ID are dropped from the feature

matrix 𝑋 as they are either the original continuous target, redundant binary target, a unique
identifier, or a non-predictive text identifier. This is good practice to ensure the model learns
from the relevant features.

1.3 3. � V13 Preprocessor: Feature Engineering Pipeline
This is the 13th revision of my code. The V13 Preprocessor is defined using ColumnTransformer
to apply specific transformations to different feature groups. This sophisticated preprocessing
strategy is key to the model’s performance.

[3]: # --- 2. V13 Preprocessor (V7 Hybrid Base + Scaled Model Year) ---
New list of features to be scaled

2

scaled_features = ['displacement', 'horsepower', 'weight', 'acceleration',␣
↪'model_year']

Preprocessor
prep_v13 = ColumnTransformer(

transformers=[
Scaling continuous + model_year
('scale', Pipeline([('imp', SimpleImputer(strategy='median')), ('scl',␣

↪StandardScaler())]),
scaled_features),

Passing cylinders raw (V7's key to success)
('pass', SimpleImputer(strategy='median'), ['cylinders']),
One-Hot Encoding only origin
('cat', OneHotEncoder(handle_unknown='ignore', sparse_output=False),␣

↪['origin'])
], remainder='drop'

)

1.3.1 Preprocessor Logic

The ColumnTransformer handles three distinct sets of features:

1. 'scale' (Scaled Features):
• Features: displacement, horsepower, weight, acceleration, and, significantly,

model_year.
• Transformation: A small Pipeline is applied: first,

SimpleImputer(strategy='median') handles any remaining missing values in
these numerical features by replacing them with the column’s median. Second,
StandardScaler() standardizes the features.

• Significance: Scaling is critical for K-NN. By including model_year in the scaled
features, we treat time as a continuous, distance-sensitive variable, assuming that cars
from adjacent years are more similar than those separated by decades.

2. 'pass' (Cylinders - Passed Raw):
• Features: cylinders.
• Transformation: Only SimpleImputer(strategy='median') is applied. Crucially, it

is NOT scaled.
• Significance: The note “(V7’s key to success)” suggests that the number of cylinders

has an inherently strong predictive power based on its raw integer value. Scaling it
might diminish the significance of the categorical/ordinal distance between, say, 4 and 8
cylinders, which is a major engineering difference. Keeping it raw preserves this strong,
unscaled relationship.

3. 'cat' (One-Hot Encoded):
• Features: origin.
• Transformation: OneHotEncoder converts the categories (e.g., USA, Europe, Japan)

into binary columns.
• Significance: This is the correct way to handle nominal categorical features, ensuring

the model doesn’t assume an arbitrary ordinal relationship between countries of origin.

3

1.4 4. � Model Definition and Training
The model is defined as a Pipeline combining the robust preprocessor with the chosen classifier.

[4]: # --- 3. Model: K=1 Nearest Neighbors (The Proven Core) ---

final_model = Pipeline([
('prep', prep_v13),
Back to K=1, as this yielded the highest score
('knn', KNeighborsClassifier(n_neighbors=1, p=2))

])

Fit on the full training data
final_model.fit(X, y)

[4]: Pipeline(steps=[('prep',
ColumnTransformer(transformers=[('scale',

Pipeline(steps=[('imp',
SimpleImputer(strategy='median')),

('scl',
StandardScaler())]),

['displacement', 'horsepower',
'weight', 'acceleration',
'model_year']),

('pass',
SimpleImputer(strategy='median'),

['cylinders']),
('cat',

OneHotEncoder(handle_unknown='ignore',
sparse_output=False),

['origin'])])),
('knn', KNeighborsClassifier(n_neighbors=1))])

1.4.1 Model

1. Pipeline Integration: The entire process is encapsulated in a single Pipeline. This ensures
that when the model is fitted or used for prediction, the test data automatically goes through
the exact same prep_v13 transformations (Imputation, Scaling, One-Hot Encoding) as the
training data, preventing transformation errors.

2. K-Nearest Neighbors (𝐾 = 1):
• Classifier: KNeighborsClassifier is chosen.
• Parameter n_neighbors=1: This is the core strategy, making it a “Nearest Neighbor”

classifier. For any new data point, the prediction is simply the class of its single closest
neighbor in the feature space.

• Parameter p=2: This specifies the distance metric as Euclidean Distance (Minkowski
distance with 𝑝 = 2). This is the standard distance metric for many K-NN applications
and aligns with the use of StandardScaler.

4

• Significance of 𝐾 = 1: The note indicates this value yielded the highest score. In
a dataset where the class boundaries are highly non-linear or where the clusters are
tightly defined, 𝐾 = 1 can be highly effective, acting almost like an exact lookup table
for previous observations. It’s the most sensitive to local data structure but can also be
susceptible to noise (high variance).

1.5 5. � Submission Generation
The final steps involve preparing the test data, generating predictions, and saving the results.

[5]: # --- 4. Generate Submission ---

Use features from test.csv
X_test = df_test.drop(columns=['ID', 'name'], errors='ignore')
final_predictions = final_model.predict(X_test)

df_submission = pd.DataFrame({
'ID': test_ids,
'mpg_01': final_predictions.astype(int)

})

submission_file = "solution.csv"
df_submission.to_csv(submission_file, index=False)

print(f"� Final submission file '{submission_file}' created using K=1 with␣
↪Scaled Year.")

print(df_submission.head())

� Final submission file 'solution.csv' created using K=1 with Scaled Year.
ID mpg_01

0 70_chevrolet chevelle malibu_alpha_3505 0
1 71_buick skylark 320_bravo_3697 0
2 70_plymouth satellite_charlie_3421 0
3 68_amc rebel sst_delta_3418 0
4 70_ford torino_echo_3444 0

1.5.1 Prediction and Output

1. Test Data Preparation: The 𝑋_𝑡𝑒𝑠𝑡 feature matrix is created by dropping the non-
predictive ID and name columns, mirroring the cleaning done on the training data.

2. Prediction: The final_model.predict(X_test) call automatically applies the entire
prep_v13 pipeline to the test data before feeding it to the 𝐾 = 1 classifier. This consis-
tent transformation is why using the Pipeline object is so important.

3. Submission Formatting: The predictions are combined with the original test_ids into a
DataFrame. The predictions are explicitly cast to int to ensure the final output is in the
expected integer format (0 or 1).

5

4. Output: The predictions are saved to solution.csv, ready for submission. The print
statement confirms the successful execution and the key model parameters used.

6

	🚗 Deep Analysis of an Automotive MPG Classification Model
	1. 🛠️ Setup and Data Loading
	Libraries

	2. 💾 Data Loading, Cleaning, and Target Preparation
	Data Preparation

	3. ⚙️ V13 Preprocessor: Feature Engineering Pipeline
	Preprocessor Logic

	4. 🧠 Model Definition and Training
	Model

	5. 📤 Submission Generation
	Prediction and Output

